
Scaling behavior of IMPACT+mxyzptlk on
various architectures

James Amundson

21st October 2002

1 Introduction

This document describes my preliminary attempt to understand the perfo-
mance of IMPACT+mxyzptlk for FNAL Booster studies. IMPACT is a Fortran
90 accellerator simulation code with a parallelized 6D space charge implemen-
tation. mxyzptlk is a C++ library that we use to provide maps for the Booster.
This study is preliminary; I have made no serious attempt to verify the repro-
ducibility of the results.

2 The machines

2.1 Seaborg

Seaborg is NERSC’s IBM SP RS/6000 with 2,944 375 MHz POWER3 processors.
For details see <http://hpcf.nersc.gov/computers/SP/>. We use the IBM For-
tran compiler and g++ on Seaborg.

2.2 Alvarez

Alvarez is NERSC’s Linux cluster of 80 dual 866 MHz PIII processors con-
nected with both Ethernet and Myrinet networking. I used the Myrinet for
these tests. We use the Portland Group Fortran compiler and g++ with the
MPICH MPI libraries on Alvarez.

2.3 Heimdall

Haimdall is the FNAL Beams Theory Group’s Linux cluster of 32 dual Athlon
1.4 GHz processors connected with 100 Mbit/s Ethernet. Heimdall also has Gi-
gabit Ethernet, but it is waiting for a backordered switch. We use the Portland
Group Fortran compiler and g++ with the LAM MPI libraries on Heimdall.
We have also run tests using the Intel Fortran Compiler on Heimdall. In both

1

cases, the code was compiled with “-O2 -g”. The performance using the Port-
land Group Compiler can be improved through a more judicious set of flags,
however in no case was I able to get close to the performance I saw using the
Intel Compiler. Compiling under Intel with “-O3” produced a small, negative
effect.

2.4 Abacus

Abacus is my Laptop witha (single!) 800 MHz PIII processor. I use the Intel
Fortran compiler and g++ and the MPICH MPI libraries on my laptop.

3 The tests

3.1 No space charge

For the first test, I ran 100K particles through a single turn of the Booster with-
out space charge effects. The wrapper code with all the input parameters is
stored in the Impact3d cvs module in the file booster_test1.py. I told impact
to use a symmetric geometry for all multi-cpu runs, e.g 64 cpus ran in the 8x8
configuration. I am presenting the data with both linear and logarthmic time
scales. The latter is better for displaying scaling behavior, while the former is
better at indicating perceived speed.

10

100

1000

1 2 4 8 16 32 64

tim
e

[s
]

cpu

abacus

heimdall

alvarez

seaborg

heimdall-ifc

2

0

50

100

150

200

250

300

350

1 2 4 8 16 32 64

tim
e

[s
]

cpu

abacus

heimdall

alvarez

seaborg

heimdall-ifc

3.2 Space Charge

The second test involved IMPACT’s space charge routines. I used 2.7M parti-
cles on a 65x65x65 grid. The particles travelled through one turn of the booster
with 100 space chage kicks. The wrapper code with all the input parameters is
stored in the Impact3d cvs module in the file booster_test2.py. I used the sym-
metric geometry for all but one run; the faster 36 processor run on heimdall
used the 4x9 configuration.

3

100

1000

10000

1 2 4 8 16 32 64

tim
e

[s
]

cpu

abacus

heimdall

alvarez

seaborg

heimdall-ifc

0

500

1000

1500

2000

2500

3000

1 2 4 8 16 32 64

tim
e

[s
]

cpu

abacus

heimdall

alvarez

seaborg

heimdall-ifc

4

